AD-A248 107
T N, * ¢

ELECTE
N APRO1 1992] '

SATOOL II: AN IDEF, CASE WORKBENCH
USING ADA AND THE X WINDOW SYSTEM

THESIS
Betty Topp
Captain, USAF

AFIT/GCS/ENG /92M-04

This doqumem has been approved
foe public telease and sale; its
distribution is unlimited.

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TE

92-08140

INFEIRIGH

CHNOLOGY

Wright-Patterson Air Force Base, Ohio

92 3 31 071

M

AFIT/GCS/ENG /92M-04

o——

SATOOL II: AN IDEF, CASE WORKBENCH
USING ADA AND THE X WINDOW SYSTEM

THESIS -

Accesion For i
Betty Topp NTIS CRA&I M)
Captain, USAF DT 7AB 0
U aiowged |

AFIT/GCS/ENG/92M-04 Justification

By
Dist ibution/

Availability Codes

}\vai't' 5'.':2276?
Spucial

Approved for public release; distribution unlimited

AFIT/GCS/ENG/92M-04

SATOOL II: AN IDEF, CASE WORKBENCH
USING ADA AND THE X WINDOW SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems

Betty Topp, Bachelor of Science in Computer Science

Captain, USAF

March, 1992

Approved for public release; distribution unlimited

form /ipprovéd

REPORT DOCUMENTATION PAGE | fomaeerond

Public repurting buider lut this wilecuun of wifuimativn' s estimated 1o sve1age | huul ge1 (espunse, (nduding the e tor rewi@ving instructions, searching existing data sources,
gathénng and mauwditunyg WE dala needed, ond wmpleting and 1 eviewing \ne wHecuon ui wtuimanun, yend comments regarding this burden estimate or any other aspect of tis
woliecon of wiutmatiyh, nuuding augyes. . o 1G teduniy Uay burden Lo Washinglun deadquarters setvies, Lirectorate Tor infurmation Operations and veports, 1215 Jefterson
Davis Highvay, Suite 1204, Aihngiun, vA ccevd-4302, and Ly the Office o7 Manayement and Budger Paperwork Red _, on Project (0704-0188), wastington, UC £u503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992 Master’s Thesis

4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
SATOOL II: AN.IDEF; CASE WORKBENCH
USING ADA AND THE X WINDOW SYSTEM

6. AUTHOR(S) ‘
Betty Topp, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REZ()I«:‘I;:Z%B;;‘ENG 004

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) ‘10. SPONSORING . MONITORING
- AGENCY REPORT NUMBSER
LtC Jjames Sweeder

SDIO/SDA, Room 1E149
The Pentagon, Washington D.C. 20301-7100
(202)-693-1826

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

\ 13. ABSTRACT (Maximum 200 words)

> The objective of this research effort is to perform an object oriented analysis, design and implementation of the
graphical user interface (GUI) for the SATool II system. SATool II is a Computer Asisted Software Engineering
(CASE) workbench developed using Ada and the X Window system. It is designed to serve as an IDEF, graphical
project editor and data dictionary editor. IDEFy is the ICAM Definition Method Zero graphical notation
language adopted by the Air Force to produce a function model of a manufacturing system or environment.
The Air Force Institute of Technology is conducting on-going research in the use of IDEFy in the requirements
analysis phase of the software lifecycle. This thesis describes the object oriented design and implementation of §
the GUI based on an entity-relationship model developed by earlier research efforts for the IDEF, language. It i
also describes the integration of the overall SATool II system compuosed of the essential model, drawing model,

machine-independent Ada graphical support environment, and the graphical user interface. (__,,
T~

I SIS~

i

!

¥

1 14, SUBJECT TERMS) ’ i5. NUMBER OF PAGES

’ Computer Aided Design, Software Engineering, Ada Programming Language, Object 4180
; Oriented Design, X Window System, Computer Asisted Software Engineering 16 "CE CODE

C17. SECURITY CRASSIFICATION {16, SECURITY CLASSIFICATION |19, SECURIY CLASSHICATION | 20. LIMITATION OF ABSTRACT
! QOF REPORT QOF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

S L N I L L = e PN = e

GENERAL !NSTRUCTION& FOR CON‘PLET!NG SF 298

The Report Documentation Page (RDP) 15 used in announcing and cataloging reports It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in.each-biock of the form follow. It is important to stay within the lines to. meet

optical scannmg requirements.

Block 1. Agency Useé Only (Leave biank).

Block 2. Report Date. Full publication date
including day, inonth, and year, if available{e.g. 1
Jan~88). Must cite at least the year.

Black 3. Type of Report and Dates Covered.
State whether reportis interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 -30 Jun 83).

Block 4, Title and Subtitle. Atitle is taken from
the part of the report that provides the mo ¢
meaningfuland complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and

. include subtitle for the specific volume. On
classified dacuiments en. er the title classification
ifrparentheses.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may-tnclude program
element humber(s), project number(s), task
nuriber(s), and work unit number(s) Use the
following labels:

¢ - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Floment Accession No.

Biock 6. Author(s). Name(s) of person(s)
resporsible for writing the report, performing
the research, or credited with the content of the
report. if editor or compiler, this should follow
the name(s}.

Block 7. Performing Qruanization Name(s) and
Address{es). Self-explanatory.

Block &. Perforining Organization Report
Number. Enter the unique alphanumeric report
number(s} assigned by the arganization
performing the regort.

Aock 9. SpomvonngiMonitoning Agency pame(s)
ond Addrass(es), Self-2xplenaiory.

Blozk 1. Soonsocing/fonitoring Agency
Report Nurebigr. {if known)

Black 1v. Supplementary Notes. Enter
information nat included elsewhere such as.
Preparad incooperaiion with..
publishad in.. . VWher a regort 1§ ravised, include
& staiement wheihsr (he new reportsupinedes
orsupplemants ihe older renort

,Trans.o0f. | Tobe

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability-to the;public. Enter-additional
limitations or special- markingsin all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.248, "Distribution
Statements-on Technical
Documents,”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leaveblank.

Block 12b. Distributior: Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leaveblank.

Block 13, Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14, Subect Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
cade {NTIS only).

Blocks 17. < 19. Security Classifications. Self-
explanatory. Enter 1J.S. Security Classificationin
accordance with ULS, Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

2lock 20. Lirmitation of Abstract. This block must
be completed to asugn a hmitation to the
absiract. Enter either UL (unlimited) or SAR (same
as report). Aneniry in this block is necessary if
the abstract is to be hrmuted, if blan' |, the absiract
i5 assumed to be unlimited

Preface

This thesis documerts the analysis, design, and implementation of SATool
11, an object-based IDEF, Computer Assisted Software Engineering (CASE) work-
bench. IDEF, is a methodology used by the Air Force Program for Integrated
Computer Aided Manufacturing (ICAM) in an effort to increase the manufacturing
productivity of the Aerospace Industry through the application of computer tech-
nology (18:1-1). SATool II is the culmination of ongoing research at the Air Force
Institute of Technology (AFIT) Department of Electrical Engineering associated with
the Strategic Defense Initiative Organization (SDIO) and its interest with the IDEF,

language.

SATool I1is a CASE workbench designed to create, modify and preserve IDEF,
diagrams and associated data dictionary used to describe a software or manufacturing
system. It is written in Ada and uses an Ada/X Window interface to create the
graphical images for the user interface. The Ada/X Window interfuce allows SATool
IT to operate independently from any particular type of computer hardware. An
object oriented approach was used to analyze, design and implement this workbench.
SATool 11 was designed around an abstract entity relationship model of the IDEF,

methodology consisting of an essential model and a drawing model.

I would like to thank my advisor, Dr Thomas C. Hartrum, whose patience,
support and guidance made {he successful completion of this research effort possible.
I would also like to thank Bruce Clay for his advice on X Windows, Dave Doak for
the many hours of help with the Olympus System, and Rick Norris for teaching me
the value of the -i option. I especially want to thank my husband Danny and my
son Bob for their loving support. And, above all, thank you Lord for guiding me
through the longest days.

Bctty Topp

Table of Contents

Page

Preface e e e e e e 1
Tableof Contents e e e e e i1
List of Figures i i iX
Listof Tables o v e xii
L. Introduction e e e e e 1
1.1 Background o L. 2

1.1.1 The IDEF, Methodology 2

1.1.2 The C Versionof SATool 2

1.1.3 The Ada Version of SATool 3

1.2 Problem Statement 4

L3 Assumptions. oo v v v it e 4

1.4 Scope and Limitations, 5

1.5 Standards e e e e 5

1.6 Approach 5

1.7 Equipment and Software 6

1.8 Sequence of Presentation 6

I1. Literature Review o o . 7
2.1 Introduction e 7

2.2 CASE Tool Enhancements 7

2.3 Highlighting With Color 9

2.4 Online Documentation 16

1

ML

IV.

V.

S
-J <D ot

Requirements Analysis

3.1
3.2
3.3
3.4

3.6

SATool II System Design

4.1 Introduction
4.2 Generic Multiple Object Manager
4.3 Essential Model Design
4.4 Drawing Model Design
45 MAGSEDesign
4.6 Graphical User Interface Design
4.7 Overall SATool II Systemn Design
4.8 Summary v vt i e e e e e e e e
Implementationo o o
5.1 Introduction
5.2 Overall SATool 11 System Environment
53 Window Types
5.4 Dialogue Window,,
5.5 TitleWindow L oL

. Configuration Management
Automatic Diagram Layout

SUMMATY .« & v v v e e e e e e e e e e e e .

Introduction,
General Requirements
Requirements Analysis for the Graphical User Interface . .
Essential Model

3.4.1 AFIT Data Dictionary Format
Drawing Model

SUMMATY v v v v v e et e e e e e e e e

v

.........................

5
35
35
37
39
39
41
45
45

47
47
48
48

52

~ Page
56 Drawing Window 83
5.7 Main MenuWindow 53
571 Project Button 53
I 5.7.2 Diagram Button. L. 96
5.7.3 Dictionary Button e e 58
5.74 Output Button 58
5.7.5 Options Button 58
576 UtilityButton 59
5.8 Tools TitleWindow 60
5.9 Tools and Objects Windows, 60
5.9.1 CreateButton 61
59.2 UpdateButton 62
593 MoveButton 62
5.9.4 Delete Button 62
5.9.5 Clear Diagram Button 62
5.9.6 UndoButton 67
5.10 Data Dictionary Editor 67
501 Summary 69
VL. Testing and Evaluation 76
6.1 Introduction. 76
6.2 Testing. e 76
6.21 Unit Tests 76
6.2.2 External Function Tests 77
6.2.3 Integration Tests 77
6.24 SystemTests 77
6.2.5 Acceptance Tests 78
6.2.6 Installation Tests 73 '

6.2.7 Regression Tests e

6.3 Test Results.and Evaluation-
6.3.1 MAGSEInterface

6.3.2 Graphical User Interface

6.4 Summary . ..

........................

VII. Conclusions and Recommendations e e e

7.1 Summary . ..

7.2 Conclusions . .

........................

7.2.1 Research Accomplishments.

722 SAToolIl

7.3 Recommendations.

7.3.1 SATool II Menu Selections

7.3.2 System Enhancements

7.3.3 The MAGSE Subsystem

7.3.4 The Essential and Drawing Models

Appendix A. Essential Subsystem Implementation Packages
Appendix B. Drawing Subsystem Implementation Packages
Appendix C. MAGSE Subsystem Implementation

Appendix D. SATool Il User’s Manual

D.1 Introduction . .

........................

D.1.1 Background and Purpose

D.1.2 Features v v i i

D.1.3 System Requirements

D14 Overview i it e e

D.2 Getting Started

........................

vi

Page
78

78
79
80

81
81
81
81
82
82
82
83
83
84

85
89
91

93
93
93
93
93
93
94

Page
D21 QuickStart 94
) D.2.2 Operating Environment 94
D3 AGuidedTour U
D.3.1 Imtroduction . : 96
D.3.2 TheMainScreen 96
D.3.3 The Keyboard and Mouse 97
D.3.4 Using Tools and Objects 97
D.3.5 Creating and Viewing a Project 97
D.3.6 Saving and Loading a Project 99
D.3.7 ErrorHandling 99
D.3.8 Exiting SATool IT 99
D3.9 Summary 99
D.4 Objectsand Tools 100
D.4.1 Introduction 100
D42 TheObjects 100
D43 TheTools 102
D44 Summary, 103
D.5 MainScreen Menus, 103
D.5.1 Introduction 103
D.52 PROJECTMenu 103
D.53 DIAGRAMMenu 104
D.5.4 DICTIONARY Menu 105
D.5.5 OPTIONSMenu 105
D.5.6 UTILITYMenu................... 108
D.6 Printing AWindow 108
D.6.1 Introduction 108
D.6.2 X Clients for Window Capturing and Printing . . 109
D.6.3 Printing an IDEF, Diagram and Project 110
vii

Appendix E. SATool II Configuration Guide 112
E.l Introduction 112

E.2 SATool II Configuration File 112

Appendix F. SATool I Test Cases 117
F.1 Unit Test Casés 117

F.1.1 General Main Screen Windows 117

F.1.2 Main Menu Buttons 117

F.1.3 Tools Window Buttons 120

F.2 Integration Test Case 123

Appendix G. SATool II User Evaluation Form 149
Appendix H. IDEF, Diagram Syntax Review 157
Bibliography 165
Vita . . e e 167

vili

Figure

e S A o B

e T T e e Sy W
il < B 2 B T o -

t

N D
DN e

N DD
= w

List of Figures

Page
IDEF, Activity Essential Data Model 18
IDEF, Data Element Essential Data Model 19
Original IDEF, Drawing Model Relationships 25
Original IDEF, Drawing Model Classes 26
Original IDEFy Drawing Model Entities and Attributes 27
Revised IDEFy Drawing Model Entity Relationship Diagram 28
Revised IDEF, Drawing Model Entities and Attributes 29
Essential Model Design 38
Drawing Model Design v 40
MAGSE Design. oo o v v v oo 42
Graphical User Interface Design 44
Overall SATool I1 System Design 46
Booch Module Symbols 47
Overall SATool IT System View 49
SATool II Subprogram Package Dependencies 50
Dialogue Window Package Dependencies 52
Title Window Package Dependencies 53
Drawing Window Package Dependencies 54
Main Menu Window Package Dependencies 55
Project Button Package Dependencies 57
Diagram Button Package Dependencies 88
Output Button Package Dependencies 59
Options Button Package Dependencies 59
Utility Button Package Dependencies. 60

X

Figure
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

36.
37.
38.
39.
40.

42.
43.
44,
43.
46.
47.
48.
49.
50.

Page
Tools Title Window Package Dependencies 60
Tools Window Package Dependencies 61
Objects Window Package Dependencies 62
Create Button Package Dependencies 63
Update Button Package Dependencies 64
Move Button Package Dependencies 65
Delete Button Package Dependencies 66
Clear Diagram Package Dependencies 67
Undo Button Package Dependencies 68
Activity Data Dictionary Editor Screen .‘ 70
Data Element Data Dictionary Editor Screen 71
Data Dictionary Button Package Dependencies 72
Data Dictionary Main Menu Title Window Package Dependencies . . 73
Data Dictionary Main Menu Window Package Dependencies 73
Data Dictionary Activity Edit Menu Window Package Dependencies 74

Data Dictionary Data Element Edit Menu Window Package Dependen-

ClBS v i e e e 74
Data Dictionary Text Window Package Dependencies 75
Essential Subsystem Package Dependencies 86
Essential Fact Utilities Package Dependencies 87
CLIPS System Package Dependencies 88
Drawing Subsystem Package Dependencies. 90
MAGSE Subsystem Package Dependencies. 92
SATool IT Main Screen Face 98
Activity Data Dictionary Editor Screen 106
Data Element Data Dictionary Editor Screen 107

IDEF, Activity and Data Elements 158

Figure
51.
52.
53.

94.
99.

Page
Sample IDEF, Hierarchical Decomposition 159
A-0 Diagram for *Control Elevator’ 160
A0 Diagram for ’Control Elevator” 161
Al Diagram for Control Elevator’ 162
IDEFo Arrow Types o o o v o i 164

xXi

List of Tables

Table Page
1. Data Dictionary Entry Format for Activity 22
2. Data Dictionary Entry Format for Data Element 23

Xii

SATool Il: AN IDEF, CASE WORKBENCH
USING ADA AND THE X WINDOW SYSTEM

I. Introduction

The IDEF, methodology was developed by the U. S. Air Force Program for
Integrated Computer Aided Manufacturing (ICAM) in an effort to increase the man-
ufacturing productivity of the Aerospace Industry through the application of com-
puter technology (18:1-1). The IDEF, methodology is part of the IDEF (ICAM
Definition) method and is used to produce graphical representations of functions
and their interrelationships for a manufacturing system or environment (18:1-1).

IDEF, stands for “ICAM Definition Language Zero” (10:3).

To help promote the IDEF, methodology, the Air Force Institute of Technology
(AFIT) Department of Electrical and Computer Engineering developed the prede-
cessor to SATool 11, a Computer-Aided Software Engineering (CASE) tool known as
SATool (15:1-1). That tool is a graphical editor written in the C programming lan-
guage and uses the window and graphics features provided by the Sun Microsystems
workstations. Several cnhancements were suggested for this tool which included the
suggestion to make it a portable tool. These suggestions led to the creation of SATool
I1, an improved CASE tool for the IDEF, methodology (8:5-12) (27:1-2). SATool
II falls into the category of CASE workbench since it not only provides a diagram
editor but also other functions within its environment like a data dictionary editor

and a syntax checking capability.

The following section provides a description of the background information as-

sociated with the development and implement. tion of SATool II. A brief description

of the IDEF, methodology is-presented. Then, a d_iscussion of the rationale that led
to the creation of SATool II.. b

1.1 Background

1.1.1 The IDEF, Methodology IDEF, is based on SofTech’s Structured Anal-
ysis and Design Technique (SADT) (18:iii). Tt is used to produce a function model
via the graphical representation of a manufacturing system’s functions and the inter-
relationships of those functions with each other (18:1-1). The IDEF, methodology
is also useful in describing software systems and has been introduced as a graphical

language for modeling software system requirements (17:3).

AFIT tailored the IDEF, methodology to better describe software systems by
adding the requirement of a data dictionary (10:3). The data dictionary is a struc-
tured analysis modeling tool used to “organize the data elements that are pertinent
to a system, with precise, rigorous definitions so that both the user and the sys-
tem analyst will have a common understanding of all inputs, outputs, components
of stores, and intermediate calculations” (28:189). The modified IDEF, methodol-
ogy uses the data dictionary to describe the objects found in each IDEF, diagram.
The data dictionary and the objects it defines are described further in the Require-
ments Analysis chapter. A review of the IDEF, diagram syntax can be found in

Appendix H.

1.1.2 The C Version of SATool In 1987 Johnson completed a thesis at AF1I
for which he built a computer-aided graphics editor called SATool written in the
programming language C (15:1-8). SATool provides a graphics editor used to create
IDEF, structured analysis diagrams and the capability to create and manipulate data
dictionaries in accordance with the IDEF, requirements (10:3). However, SATool
relied on the Sun workstation’s graphics features to implement the user interface
which reduced the portability of the tool to other systems (27:1-2). There were

also several deficiencies observed in the user interface (27:1-2). These included,

among others, the difficulty to modify existing diagrams; the inability to create
a comprehensive data dictionary, and the lack of a hierarchical structure for the
creation, manipulation and deletion of the diagrams. In subsequent research, several
changes to the SATool system were suggested. These included added features like
portability, an improved user interface, and the ability to handle more than one

diagram per session (15:5-12).

1.1.8 The Ada Version of SATool The suggested improvements to the SATool
system brought about the development of SATool II. Portability of the system and a
more user {riendly interface were the two major improvements suggested. Additional
features, like diagram syntax checking and automatic diagram layout, were also
identified. This section provides an overview of the groundwork for the present

design of SATool II based on these suggested improvements.

The portability issue was addressed by proposing a system written in Ada
using the X Window System for the user interface. The X Window system does not
mandate a particula. user interface (23:79). “The purpose of the X Window system
is to provide a network-transparent and vendor-independent operating environment
for workstation software”(16:4). Network transparency implies that the application
can run on whatever CPU is most convenient (16:5). In contrast, the windowing
systems offered by Apple’s MacIntosh and Microsoft Windows do require that the

application adhere to a particular interface style (27:1-4).

After the completion of the C version of SATool, the structure of the system was
re-evaluated by a group of graduate students at AFIT who took an object oriented
approach to redesign of the system (1:641). An IDEF, diagram was now viewed as
an entity composed of objects from two distinct models. This approach was used
by Smith (25) who laid the groundwork to convert the user interface of SATool to
the X Window System and developed an early version of what is now the essential

mode] (17-1-2).

In 1990-91, Tevis (27), Kitchen (17), and Shyong (24) completed thesis work
which created several building blocks for the updated version of SATool. Kitchen
developed the essential model objects and operations and started work on the Ada
based expert system used for diagram syntax checking. This work was later com-
peted by Shyong. Tevis developed the drawing model objects and operations as well
as the X Window/Ada Interface called the Machine-Independent Ada Graphical
Support Environment (MAGSE). The essential model contains all the data dictio-
nary information required to describe the objects identified in the IDEF; model (all
object descriptions, relationship information, etc). The drawing model contains all
the graphics information that is part of what the IDEF, diagram looks like. This
information includes attributes such as the location and size of all boxes and lines on
the diagram. The drawing model uses the X Window system as an interface between
SATool II and its users. A detailed description of these models is provided in the

Requirements Analysis chapter.

1.2 Problem Statement

The purpose of this thesis was to develop and implement the SATool 11 system
by creating a graphical user interface (GUI) that tied together the essential and
drawing models as well as the X Window/Ada interface created by Tevis, Kitchen,
and Shyong. The result is a system that allows an entire IDEF, project to be created
or loaded into the SATool II ¢rstem, viewed, manipulated and stored with a user

interface that is network-transparent and easy to use.

1.3 Assumptions

1. Kitchen’s essential model and Tevis’ drawing model are complete with respect
to the types of objects, attributes and relationships among the objects they

have developed.

2. The Ada interface source code supplied by Science # pplications International
Corporation (SAIC) works correctly when used for calling X Windows library

functions from an Ada program (27:1-5).

3. The functions implemented in the X Window programming library perform as

described in the X Window documentation (27:1-5).

4. Tevis’ X Window/Ada interface provides all necessary functions and procedures

to implement the SATool II graphical user interface and works correctly.

1.4 Scope and Limitations

This thesis concentrates specifically on the development of the graphical user
interface for the SATool II system. This tool provides the required interfaces and
system enhancements to facilitate the work performed by a user in the development

of applications using the IDEF, methodology.

1.5 Standards

The SATool II application source code is documented using the guidelines
and standards written in (11). The actual Ada coding practices used were object-
oriented analysis, design, and implementation, loosely-coupled packages, consistent
indentation, and consistent naming of packages, procedures, functions, and variable

names (27:1-6).

1.6 Approach

The research was approached in four phases:

1. A review of work done by Tevis and Kitchen and research into the possible

enhancements to the system.

2. Analysis and design of all necessary components of the graphical user interface

that tie the essential and drawing model together.

(o1

3. Implementation-of all the graphical user interface components.

4. Unit tests, overall system integration tests, and user evaluations to ensure the

proper function of the final product.

1.7 FEquipment and Software

The following equipment and software were used during this research:

1. Sun Microsystems Sun 3/110 workstation
2. AT clone personal computer.
3. BSD UNIX operating system (version 4) and MS-DOS 3.3

4. Verdix Ada compiler (version 5)
5. SAIC source code modules for the Ada interface to X

6. X Windows System library (version 11, release 4) (14)

1.8 Sequence of Presentation

This thesis is divided into seven chapters. The first chapter is the thesis in-
troduction. Chapter 2 presents the findings of the literature review performed for
this research effort. Chapters 3, 4, and 5 present the Requirements Analysis, Design
and Implementation of the SATool II system. The SATool II test suite and results
are presented in Chapter 6. Chapter 7 summarizes the thesis findings and presents
several recommendations for further work to be done with the SATool I system

project.

II. Literature Review . - .

2.1 Introduction

This chapter presents several CASE tool enhancement options that could be
used to improve the overall performance of the SATool II user interface. A better
user interface was one of the suggestions given for the original tool. The following
sections discuss the criteria used to select the proposed enhancements to the user

interface as well as discuss several possible enhancements for the present system.

2.2 CASE Tool Enhancements

As computer hardware becomes more powerful and-less expensive, the software

developed for use in computer systems is becoming more complex. The traditional

methods and tools used to develop smaller applications have become inadequate for
use in the development of the larger, more complex software systems. “Historically,
the most significant productivity increases in manufacturing or building processes
have come about when human skills Lave been augmented by powerful tools. For
example, one man and a bulldozer can probably shift more earth in a day than
50 men working with hand tools” (26:362). In the Software Engineer’s world, one
such class of tool is known as Computer-Aided Software Engineering (CASE) tools
which can be used to extend the capabilities of Software Engineers by aiding the
software development process. There are several types of CASE tools available, but
the one of most interest to this research is the CASE workbench. A CASE workbench
is a software engineering support tool which assists the analysis and design stages
of the software development process by means of multipurpose diagram editing,
" design analysis and checking, query language facilities, data dictionary facilities,

and report/forms generation (26:363).

Following is a review of current literature on CASE workbenches which identi-

fies several features that can be used to en.hance the CASE workbench environment.

-1

e

The enhancements identified were selected based on .a set of criteria compiled by
Matingly (19:2-26 - 2-30). The purpose of this set of criteria is to be used in the
evaluation of CASE tools. In a similar light, it can also serve as a set of guidelines
for selecting enhancements that will enrich a CASE workbench environment. There

are five categories identified that useful to this research effort:

e Ease of Use - Refers to the “user friendliness” of the tool. Does it have an
online help facility? Does the graphical user interface have an easy to use menu
system? Does it have safeguards for error prevention, and in case one occurs
can the tool recover gracefully from it? Can the tool environment be controlled

so as to shut off unwanted features?

e Power - Refers to performance features like the capability to easily modify
diagrams and save the current work and be able to reload it into the system.
This category also includes the ease of adding macros systematically to the

system to increase the entire collection of possible operations.

o Robustness - Includes such criteria as consistency, adaptability and maintain-
ability. Can objects be stored and retrieved consistently? Can the tool evolve
with changing requirements? Can the tool be easily repaired once bugs are

found in it?

o Functionality - Does the tool support all aspects of the methodology? Does

the tool operate correctly and produce correct output?

o Fase of Insertion - How long does it take to learn the tool? How easy is it to

integrate into the overall software development process.

This set of criteria was used to identify four enhancements that could increase
the performance of the SATool II system in three of the above categories. The first
two sections present features that can be useful in the design of the user interface Lo
enhance ease of use and power. The last two sections present features that can be

used to increase the {unctionality of the CASE tool itself.

2.3 Highlighting With Color

Highlighting is used to display information in special formaus to emphasize its
mmportance and to set aside special areas of the screen. Some of the most common
forms of highlighting are blinking, sounds, color, and boxing (7:98-100). Color will

be the focal point of discussion in this section.

Research in the management information systems and the reference disciplines

have made several major findings (12:121):

o Color improves performance in a recali task.

o Color improves performance in a search-and-locate task.
e Color improves performance in a retention task.

¢ Color improves comprehension of instructional materials.

e Color improves performance in decision judgment task.

However, care must be taken to avoid the overuse of color. For example, it
is easy to misuse color in the interface design and end up with displays that are
error prone and unpleasing to look at. There are two common mistakes made when

designing color interfaces (26:253-285):

o The interface designer tries to use color to communicate meaning,.

e Too many colors are used in the display and/or the colors are used in incon-

sistent ways.

The problem with trying to communicate meaning through color is that there
are no standard conventions on what the meaning of colors are. So, the meaning the
designer wants a color to have may be misinterpreted. There is also the problem of

dealing with color blind users. They may not be able to perceive that a particular

color is displayed. Therefore, color should be used only for highlighting purposes, to

draw a user’s attention to a certain part of the display.

The designer must also avoid the over-use of color as well as using colors that
are too bright, and saturating the diagram with too many colors. Sommerville
suggests a set of guidelines for the effective use of color in any system interface. The
bottom line of these guidelines is that the designer should try to be as conservative

as possible when designing color displays (6:67-77).

2.4 Online Documentation

Along with written documentation, a well designed online help facility can
improve the productivity of users and increase their satisfaction with the software
system (7:54-55). Online help includes user invoked help messages, status messages,
prompts and error messages. The purpose of this facility is to allow the user to
have greater control over the system by providing him with as much information
as he needs to understand the system. Help messages should be tailored to the
user’s current context. The help message should be related to the action the user
is currently performing. The help facility should also allow the user to pick the
verbosity level of help messages to allow for various levels of expertise as users become
more familiar with the system. Finally, messages should be positive rather than
negative. They should use an active mode of address and should never be insulting

or attempt humor (26:277).

2.5 Configuration Management

Configuration management is concerned with the development of procedures
and standards for managing an evolving software system (26:552). A configuration
management facility in a CASE workbench can be particularly helpful when con-
trolling multiple design versions of a given project. Configuration management tools

allow individual versions of a system to be retrieved support system building from

10

components, and maintain relationships between components, and their documen-
tation (26:552). This type of control is difficult to achieve. However, if implemented
appropriately, it can facilitate the implementation of other features like rapid proto-

typing (26:552).

2.6 Automatic Diagram Layout

One of the goals of this research was to determine an automatic layout algo-
rithm for IDEF, diagrams. Following is a discussion of layout algorithms for data

flow diagrams, which are similar in several respects to IDEF, diagrams.

Drawing data flow diagrams can be very time consuming even in the most user
friendly of systems (21:11). An alternative to drawing the diagram from scratch
is to have the user input the project information into a requirements database or
repository and have the CASE tool draw out the diagrams based on that informa-
tion. The overall objective when creating data flow diagrams whether manually or
automatically is clarity (readability) of the diagram. Clarity is not easy to achieve
because it is difficult to identify the important characteristics of the diagram. A bal-
ance must be achieved between the symbols, text, and white space in the diagram

layout (21:11).

The approach taken by Prototzko et al (21) to solve the diagram layout problem
is to access a project database to extract the system flow information. The data is
converted to a directed-graph-like internal representation that allows the CASE tool
to follow the system flow to and from any system flow object. This is followed by the
placement of each of the data flow objects in a grid structure. A placement algorithm
is then used to place all data flow objects in a grid structure. Finally the data flow

arcs are placed between the objects by means of a routing algorithm (21:11-12),

Batini et al (2) takes a similar approach to produce a data flow diagram layout
algorithm. Two types of graphic standards are identified for data flow diagrams. The

straight line stai dard creates DFD’s where all processes are conuected by straight

11

lines. In this case the DFD is also called a bubble chart and. the processes are

identified with circles instead of boxes with rounded edges. The second standard
is the grid standard that makes all process connections run along the lines of a

rectangular grid in which the diagram is embedded (2:538-539).

The grid standard was chosen for the layout algorithm since it creates diagrams
with high regularity and modularity (2:539). The placement algorithm takes into
consideration the number of connections for each process and embeds each one into
the grid by first placing the ones that have only one connection in the innermost
part of the grid. The grid is viewed as a set of arrays of grid cells whose perimeter
grows as the number of connections per process grows (2:539). This description is
a simplistic view of the placement algorithm described in (2). The layout algorithm

uses the following strategy (2:540-541):

¢ Iind a two dimensional or planar representation for the DFD grid that tries

to stay within five prescribed guidelines (2:539):

1. Minimize the crossings between connections.

o

Minimize the global number of bends in connection lines.
3. Minimize the global length of connections.
4. Minimize the area of the smallest rectangle covering the diagram.

5. Place 2xternal boundary symbols so as to minimize crossings.

o Then give an orthogonal shape to the planar representation finding an orthog-

onal representation. This follows the second guideline.

e Finally, the grid embedding is completed by assigning integer lengths to line

segments, according to guidelines three and four.

The layout algorithms discussed so far have been directed towards data flow

diagrams. Even though there are several similarities between DFDs aad IDEF,

12

diagrams, the restrictive syntax rules of the IDEF, methodology may provide a
more direct approach to laying out IDEF, diagrams. Further research is suggested

in this area.

2.7 Summary

This chapter presented several enhancement options for the SATool 1I system.
A set of CASE tool evaluation criteria was identified to aid in the selection of these
enhancement options. SATool II must be made attractive to the user if it is going
to be used in a software development process that includes the IDEF, methodol-
ogy. The evaluation criteria was used to determine what enhancements would make
SATool II more attractive. The enhancement features presented in this literature
review addressed this concern by advocating a good user interface design by means
of appropriate highlighting and help facilities. It also presented the options of auto-
matic diagram layout and configuration control as functional enhancements to allow

the speedup of the software development process.

13

III. Requirements Analysis

3.1 Introduction

This chapter presents an analysis of the requirements for the design and im-

plementation of the graphical user interface (GUI) for the SATool II system. It

also presents a review of the requirement models created to capture the information

found in the IDEF, diagrams.

3.2 General Requirements
Following is a summary of the system requirements identified for SATool II
(17:34):

1. All parts of SATool II must be implemented in Ada.

2. The tool must have a graphical user interface (GUI).

3. The tool must be implemented on a workstation supporting X-Windows and
Ada.

4. The tool must provide for the creation, editing, and output of IDEF, diagrams
(i.e., the manipulation of IDEF, syntax).

5. The tool must provide for the creation, editing, and output of the AFIT Data
Dictionary formats.

6. The tool must provide for the storage of the essential data model information
of an IDEF; model that is separated from the stored drawing data model
information.

7. The tool must provide for the storage or automatic generation of the drawing

data model information (i.e., the diagrams) of an IDEF; model that is separate

from the stored essential data model information.

14

10.

[

(17),

The tool must be integrated with an Ada based expert system for the purpose

of identifying IDEF, syntax and modeling errors.

The tool must allow for the user to terminate work on an IDEF, model, leaving
it in an unfinished state. For example creating an activity with no connecting

data elements leaves the IDEF, model in an incomplete state.

The tool must be developed using an object oriented design methodology in

order to assess its potential in the construction of an Ada based CASE tool.

An analysis of these requirements suggests five subproblems to be solved:

. The development and implementation of an object model to create, retrieve

and restore IDEF, essential model information (requirements 1, 4, 6, 9, and
10) (17:35).
The development and implementation of an interface to an Ada based expert

system (requirement 8) (17:35).

The development and implementation of an object model to create, retrieve
and restore IDEF, drawing model information (requirements 1, 4, 7, 9, and

10).

. The development and implementation of a method to create, retrieve and out-

put AFIT Data Dictionary information (requirement 5) (17:35).

The development and implementation of a graphical user interface using the
X Window system and Ada that is capable of manipulating the essential and
drawing model information in order to present a complete, homogeneous pic-

ture of an IDEF, project to the user (requirements 2, 3 and 4).

The first three subproblems were addressed and satisfied by Tevis (27), Kitchen
and Shyong (24) during their research. The work they completed became the

foundation for the final design and implemcntation o! the GUI system. Kitchen

15

provided the essential model that would capture the data dictionary information of
the IDEF, diagrams. Tevis developed the drawing model for the IDEF, diagrams
as well as the X-Window-Ada interface. Shyong implemented the expert system
specified by requirement 9. The fourth and ﬁfthi subproblems defined the major
thrust on requirements for the design of the GUI for the SATool II system.

3.3 Requirements Analysis for the Graphical User Interface

Based on the requirements specified in the previous section, the SATool II
system must be capable of handling an entire IDEF, project during any given session.
This implies that the system must be able to maintain information on the project’s
hierarchical decomposition. These requirements also specify that the data stored for
each project must be easily created, modified, stored, and reloaded. The SATool 11
system must maintain a data dictionary for any project that is loaded into the system
as well as show the project information in a graphical format similar to the format
given for the manual drawings. The requirements also suggest that an automatic

diagram layout feature by a part of the final product.

Since the GUI design is based on the two models designed to capture the
information found in the IDEF, diagrams, the following two sections review the
essential and drawing model composition. There are two basic types of objects
present in an IDEF, diagram, activities and data elements (see Appendix H for
details on IDEF, syntax). The essential model maintains the logical relationships
between activities and data elements as well as the data dictionary information for
each data element and activity. The drawing model maintains the physical (location,

shape, etc.) information on data elements and activities.

3.4 Essential Model

The present version of the essential model description was designed by Kitchen

(17). Figure 1 and Figure 2 show the entity relationship diagrams that d :scribe this

16

model. Figure 1 describes the attributes of an activity and its relationship with
other activities and data elements. Figure 2 completes the picture by showing the
attributes of the data elements and its relationship with other data elements and
activities. Overall, there are six entities and twelve relationships defined by the

essential modél.

The six objects defined by the essential model are:

1. Project: This entity refers to the project the activity or data element is asso-
ciated with. Its one identifying attribute is Pname and contains the project

name.

2. Activity: An activity represents a function performed by a given system. There

are seven attributes associated with the activity:

e Name: Used as the unique identifier.

o Activity Number: Used to determine the location of the activity in the

diagram hierarchy.

Description: Used to describe the activity’s function.

Version: records the current version number of the activity.

Date: indicates the creation date of the activity.

Changes: captures what has changed between this activity and the pre-

vious version.

Author: The creator of the activity.

3. Historical Activity: This is an activity that belongs to another project and
is “called” by the activity in this project. Its two identifying attributes are
Project and Activity Number. Project represents the project the activity comes

from and Activity Number shows which activity in the project to address.

17

data

element

historical
activity

i . based on

- ‘ ref

project

...................

defined

elsewhere

activity

(e

Figure 1. IDEF, Activity Essential Data Model

18

S

description

¢vescsnscscscevanay

.
3
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
2
W

Q

3

i

-

eransasncsanan
:

:

. L
s w5
: o 2
. = =
s 2
: 2 g
: T 2
. Q
:

:

:

R

Seseesucecsescnnnsd

Figure 2. IDEF, Data Element Essential Data Model

19

4. Ref: Captures any reference associated with an activity or data element. The
identifying attributes are Reference and Type. The reference. entity allows an
activity or data element to be associated to written documents other than
those defined by the IDEF, methodology. This allows for a better description

of the object and its function.

5. Data Element: Data Elements are used to define the data that is passed from
activity to activity. This data can be simply information passed, yet, it can also
be defined as a control mechanism for the activity. There are ten attributes

associated with the data element:

o Name: Identifying Attribute is the name of the data element.
e Description: Gives a description of the data element.

e Data Type: Indicates the type of data. For example, is it a character

string or an integer.
o Minimum: Holds the minimum value the data element can take.

o Mazimum: Holds the maximum value the data element can take.

Range: The data value range (if applicable).

Version: The current version of the data element.

Changes: How is this data element version different from previous version.

Date: Date of creation of present version.

Author: Name of person who created this entity.

6. Values: Used for data elements that do not consist of other data elements and
have enumerated values. Each value object is identified by a single attribute

Value which contains one of the values the data element can take on.

Of the twelve relationships defined by the ER diagran, two share the same
name and definition (Part.Of and Based.On). So, they are only described once here.

The relationships are defined i1 the following manner:

20

10.

. Part_Of: A data element or an activity are part of exactly one project. A

project may contain one or more activities or data elements.

. Inputs: An activity can have zero or more data elements as input.

Outputs: An activity must have at least one output data element.

Is.Controlled _By: An activity must have at least one control data element.

. Is.Mechanized By: An activity can have zero or more mechanism data ele-

ments.

Composed.Of: Each activity has one parent activity, except for the A-0 activity
which has no parent. On the other hand an activity can have zero or more

children activities.

Consists_Of: This relationship is used for building pipelines (bundles/joins
and forks). It shows that a data element can be broken down into other data
elements (fork) and at the same time a data element can be part of a group of

data elements that feed into a parent data element (bundle/join).

Calls: An activity can call zero to many historical activities and at the same

time a historical activity can be called by zero or more activities.

Based.On: Shows that a data element or activity can have zero or more refer-
ences and at the same time a reference can be related to zero or more activities

or data elements.

Can_Have: Associates a data element that consists of enumerated values to

those values. Each value is associated with one or more data elements.

3.4.1 AFIT Data Dictionary Format Even though the IDEF; methodology

does not explicitly require a data dictionary, it does require a glossary (10:73). AFIT

introduced the use of the data dictionary to support this requirement. The present

version of the AFIT data dictionary format was established by Kitchen (17). A data

21

dictionary entry is required for each activity and data element. Table 1 shows the

data dictionary format for an activity. Table 2 shows the format for a data element.

| Format | Field | Description B | Size |

(S) Name | activity name A C25
(S) Type defaults to ACTIVITY N/A
(5) Project project name 1 C25
(S) Number activity number of this activity | C20
(ML) | Description text description C60
(MF) | Inputs data element name 25
(MF) | Outputs data element name C25
(MF) | Controls data element name C25
(MF) | Mechanisms data element name A C25
(G) Calls: N/A
(S) ...Project different or same project name C25
(S) ...Activity Number | activity number of called activity | C25
(S) Parent name of parent activity 25
(ML) | Reference reference cite C60
(S) Ref Type type of the reference C25
(S) Version version of this entry C10
(ML) | Changes a history of the changes C60
(S) Date mm/dd/yy (date of creation) C8

(S) Author author’s name C25

Table 1. Data Dictionary Entry Format for Activity

The field classifications for the AFIT data dictionary formats shown are as

follows (17:52):
o (S) - The field consists of a single field that appears on a single line.

o (ML) - The field consists of a single field that appears on one or more lines.

o (MF) - The field consists of one or more fields, and each is a single field that

appears on a single line.

o (G) - The field consists of two or more fields grouped together and multiple
groups are allowed. However, each group member is still a single field that can

only appear on a single line.

| Format | Field | Description | Size |

(S) Name data element name C25
(S) Type defaults to DATA ELEMENT N/A
(S) Project project name C25
(ML) | Description text description C60
(S) Data Type type of the data, if known C15
(S) MIn Value minimum data value, if known C15
(S) Max Value maximum data. value, if known C15
(S) Range range of values, if applicable C60
(MF) | Values enumeration values, if applicable C25
(MG) | Decomposition: N/A
(S) ...Part Of name of parent data element C25
(MF) [...Composition subcomponent data element names | C25
(MG) | Sources/Destinations: N/A
(MF) | ...Outputs activity(s) where output C25
(MF) | ...Inputs activity(s) where input C25
(MF) | ...Controls activity(s) where a control C25
(ML) | Reference reference cite C60
(S) Ref Type type of the reference C25
(S) Version version of this entry C10
(ML) | Changes a history of the changes C60
(S) Date mm/dd/yy (date of creation) C8

(S) Author author’s name C25

Table 2. Data Dictionary Entry Format for Data Element

23

e (MG) - Two or more fields are grouped together and multiple groups are al-
lowed. Each group memiberis permitted to be a single field, a single field
of multiple lines, or multiple fields. "herefore, each group member must be

classified with either a ’S’, ML, or "MF" field classification.

3.5 Drawing Model

The present version of the drawing model is a modified version of the drawing
model established by Tevis (27) (see Figure 3 through Figure 5). While reviewing
the drawing model several inadequacies were found in the type of attributes each
object was given to store necessary information. All previously identified objects
are still found in the present model (Figure 6). However, the terminator object is
decomposed into its subclass objects (simple turn, junctor, and arrow) since they
each have a different set of attributes (Figure 7). The relationships between the
objects were simplified by deleting the relationship between a label and a historical
activity. A label now identifies a data element, a squiggle, or a footnote. The
historical activity relationship is taken care of by the essential model. It has no
physical attribute that needs to be shown in the IDEF, diagram, and therefore,
need not be repeated in the drawing model. The relationship between the verbal
addition objects and the squiggle were also changed. Footnotes are now identified

by labels. Squiggles can either point to a label or a note.

Following is a description of the objecis defined by the revised drawing model:

1. Diagram: A diagram can be composed of zero or more drawable objects. It
can be derived from a single box, but does not have to be. This allows for the
creation of the A-0 diagram which has no parent activity (or box). It is not
considered a drawable object. Instead it is a template for objects to be drawn

on. Its attributes are:

24

diagram

o 1 r a
for b I ! !
or i historical | :
exposition] | svity
) I I element achvity 1
only | ! !
4 L- -
verbal line
" squiggle label box terminator
addition abe segment
1 1
is S
a location attaches attaches
(o {o
2 1
— note
| [foot- gets
note location connector
stub
rems=== A
{
1 defined '
| |
—| meta- : elsewhere :
note

Figure 3. Original IDEF, Drawing Model Relationships

25

drawable

object
is
a
diagram
for
exposition connector
only stub
verbal line
label squiggle addition segment box terminator
is
a
* foot- meta-
note
note note

Figure 4. Original IDEFy Drawing Model Classes

for
exposition
only

Cgiure D

drawable

object

diagram

(o)

verbal

addition

squiggle

line

segment

box

terminator

@ @ @&

note

foot-
note

Cather)

meta-
note

G

«nnector

stub

Figure 5. Original IDETF, Drawing Model Entities and Attributes

&S]
-1

FEO

Diagram

. 0:1
Drawable Igrived o Box
Metanote Object rom
I .

isa

Footnote
Note %

Arrow

Line Simple

Squiggle Label Segment Turn

Junctor

]

: Data
: Element
]

0:M
Connects
3 to

0:1
1 onnects
to

0:1
0:M _Connects
to

Figure 6. Revised IDEF, Drawing Model Entity Relationship Diagram

Symbol

Objectl ID
Object2 ID

Box ID

Reader 2

b

Diagram

Wk

\
/

@

p0ee 6 0 0

ot

/
Drawable
Line Object
Segment \ ' / Box
I
is a
Metanote Squiggle
Simple
Footnote Turn
Note FEO
Arrow Label Junctor

End Pt 1

Object ID

Linel ID

iR 0460) ot

Figure 7. Revised IDEF; Drawing Model Entities and Attributes

29

e Boz_ID- The unique identification string of the activity box this diagram

is derived from.
o C_Number - It is the activity number of the parent activity.
o Reader_l - Name of the first person that reviewed the diagram.
o Reader_2- Name of the second person that reviewed the diagram.
o Reader.3- Name of the third person that reviewed the diagram.
o Rev_Datel - Dale of first review.
o Rev_Date? - Date of second review.

Rev_Date3 - Date of third review.

2. Drawable_Object: A drawable object is any one of the other eleven objects
shown in the ER. diagram: FEO, metanote, footnote, note, squiggle, label, line
scgment, simple turn, junctor, arrow, box. It has three attributes that are

globally shared by all drawable objects:

o [D - The unique identification string for each object in the system.

o Start_Pt- Location of the object on a diagram. This is the only location
information needed for some objects, like FEO’s, notes, and arrow heads.
Other objects, like line segments and squiggles require an end point also.

Those attributes are identified for each object individually.

o Diagram_ID - The unique id string for the diagram that contains a par-

ticular object.

3. FEO: For Exposition Only (FEO) is an indicator that there is separate figure
associated with this diagram. For example, a context diagram. Its only at-
tribute is Picture. This is a reference id to that other figure associated with

the diagram.

30

. Metanote: A note that provides information about the diagram as a whole. Its
only attribute, Text, holds the string of information the user wishes to convey

about the diagram.

. Footnote: A note that is placed at the bottom of the diagram. It too has only
one attribute, Text. It is used to clarify any ambiguities that may be perceived

with the objects and their relationships within the diagram.

. Note: A small message used to help clarify a particular part of the diagram
drawing. Its purpose is the same as that of a footnote. The only difference is
that a footnote is placed at the bottom of the diagram and a note is placed
among the diagram objects. There is usually a squiggle associated with a note.
Its used to show what area the note is referring to in the diagram. Its attributes

are:

o Text - Holds a descriptive string about an area of the diagram.

o Squiggle_ID - Unique squiggle identifier that associates the note with a

given area of the diagram.

. Squiggle: used to assist readability in a crowded part of the diagram. It usually
points to a label or a note. Its only attribute is End.Pt. Indicates how long

the squiggle is.

. Label: Used to identify a data element by providing its name. It ic usually
associated with a line segment; but, in the case of crowding, a squiggle can be
used as a link between the line segment and the label. A label can also be used
to identify a footnote by providing the footnote number. A squiggle is always

used to point to the label when the label is associated with a footnote.

o Text - Contains the label text, it could be a data element name or a

footnote number.

9.

10.

11.

o Object_ID - The unique id of the line segment or squiggle it is associated

with.

e DE_Name - Name of the data element associated with this label. This

could be a blank field if the label is associated with a footnote instead.

Line Segment: A data element consists of one or more line segments that are
connected to each other by simple turns or junctors and are finalized by an

arrow. Its attributes are:

e Fnd_Pt - Determines the length of the line segment.

e DE_Name - The data element this line segment is associated with.

Simple Turn: A data element can be constructed of one or more line segments.
These line segments can be connected to each other by simple turns. All the

line segments connected by simple turns define the same data element.

o End_Pt - Determines direction of the simple turn.

o Linel ID- Line segment id of line attached at the start point of the simple

turn.

o Line2_ID - Line segment id of the line attached at the end point of the

simple turn.

Junctor: Line segments can also be connected to each other via junctors. These
differ from simple turns in that they are usually used to define the members
of a pipeline. So, a junctor can actually be connecting three different data

elements.

o End_Pt_1 - Determines direction of the junctor.

o FEnd_Pt_2 - Determines direction of the junctor.

SV Ry oo

e Linel_ID - Line segment id of line attached at the start point of the

junctor.

o Line2.ID - Line segment id of the line attached at the first end point of

the junctor.

o Line3.ID - Line segment id of the line attached at the second end point

of the junctor.

12. Arrow: An arrow is what should really be called a terminator because the
presence of an arrow cletermines whether or not a data element has been com-
pletely defined. It is always altached to a line segment on one end. The other

end can be attached to an activity box or left blank.

¢ Symbol - The arrow can have several shapes (see Figure 55 in chapter 2).

It can be a simple arrow-head, 2 tunnel arrow, a to_all or a from.all.
» Direction - Deternzines which way the arrow is pointed.

o Text - Used to identify the single character allowed in the to.all and

from_.all arrows.
o Object!_ID - Unique id of a line segment, a box or a null object.

o Cbject2.ID - Unique id of a line segment, a box or a null object.
13. Box: Defines the lccation of an . ctivity in the diagram. It has two attributes:

o Ind_Pt - Determines the size of the box.

o Act.Name - Unique activity id of the associated activity.

There are thirteen relationships shown in the drawing model ER diagram. Of

these thirteen, there are only seven distinct relationships:

1 Defines: For every activity there is one box defined.

33

3.6

. Derived From: A diagram may be derived from an activity box, except for the

A-0 diagram which has no parent activity. On the other hand a box can have

zero or one diagram.associated with it.

Points_To: A squiggle points to a label or a note.

. Id’s: A label id’s a data element by keeping its name or a footnote by keeping

the number of the particular footnote at the bottom of the diagram.

. Connects.To: All the subcomponents of a data element are associated to each

other via the connector stubs.

. Builds_A: A data element is composed of one or more line segments. In turn

each line segment must have only one data element associated with it.

Summary

This chapter presented the SATool II system requirements and the IDEF,

models that were created to satisfy those requirements. One of the goals of these

requirements was to create an object based system. Research done by Kitchen (17)

and Tevis (27) identified the essential and drawing models needed to construct an

object based system for SATool II. Shyong (24) completed work that fulfilled the

requirement for an expert system. The drawing model was revised by redefining the

relationships between objects and the attributes of those objects. The essential model

and the AFIT data dictionary format remain as defined in (17). The requirements

specified for the SATool II system as well as the structure of the essential and drawing

models are the primary factors influencing the GUI design and implementation.

34

IV. SATool II System Design

4.1 Introduction

The design of the SATool II system is divided into four major parts: the Essen-
tial Subsystem, the Drawing Subsystem, the Machine-Independent Ada Graphical
Support Environment (MAGSE) Subsystem, and the Graphical User Interface (GUI)
Subsystem. The object oriented design (OOD) process methodology used through-
out the development of SATool II is based on (5). The process is divided into four
steps (5:190):

Identify the classes and objects at a given level of abstraction.

Identify the semantics of these classes and objects.

Identify the relationships among these classes and objects.

Implement these classes and objects.

The ideniification of the object classes, the objects and the relationship be-
tween them was accomplished via the analysis of the Entity-Relationship Diagrams
described in chapter 3 for the essential and drawing models. The semantics of the
classes were defined via the use of the Generic Multiple Object Manager. This man-
ager will be discussed in the next section. The implementation of the object classes

and objects is discussed in the next chapter.

4.2 Generic Multiple Object Manager

The Generic Multiple Object Manager is a modified version of the Booch
component Queue Nonpriority Balking Sequential Unbounded Unmanaged Iterator
(4:166-169). Its function is to maintain a sequential list of items. The abstract data

type (ADT) for this manager describes the operations that can be performed on

39

objects that are managed by it. Following is the abstract data type for the Generic
Multiple Object Manager:

Structure Generic_Multiple_Object_Manager (manager,

object,

boolean,

pointer)

Declare

Create() => manager
Clear (manager) => manager
Add_Object(item, manager, pointer) => manager’, pointer’
Set_Object(pointer, item) => manager’
Remove_Object(manager, pointer) => manager’, pointer’
Is_Equal (manager, manager’) => boolean
Is_Empty(manager) =>) boolean
Length_0f (manager) => natural

Initialize_Iterator(pointer, manager) => pointer’

Get_Next(pointer) => pointer’
Value_0f _Object(pointer) => object
Is_Done(pointer) => boolean

end Generic Multiple Object Manager

There is a separate manager declared for each type of object identified in the
Essential and Drawing Subsystems. The manager can add an object, modify it once

it’s been added, view the contents of the object, or delete it from the list.

36

4.3 Essential Model Design

The Essential Subsystem is composed of seven object managers (Figure 8).
They are based on the essential model Entity-Relationship diagrams shown in Chap-
ter 3 (see Figure 1 and Figure 2). These figures identified 6 entities and 10 types
of relationships among the entities. Based on the domain analysis done by Kitchen
(17), th:)se entities and relationships were reduced to seven object classes (types),
six of which have to be tracked via an object manager like the one described in the

previous section.

The project manager -maintains the name of the project being held in the
SATool II environment. Since there is only one project in the SATool II system
at any time, a multiple object manager was not required. The activity, historical
activity, and data element object classes are a reflection of the entities described in

the previous chapter.

Three relation classes were identified as requiring a manager. The Calls relation
manager handles the relationships that are identified between an activity and a
historical activity. The Consists-Of relation manager handles the relationships that
are identified between an activity and other activities or between a data element and
other data elements. The final manager identified was the ICOM relation manager.
This manager maintains all the objects from the ICOM relation class. This class is
a summary of the Input, Control, Output, and Mechanism relationships identified

between an activity and a data element in the essential model ER diagram.

An integral part of the Essential Subsystem is the Expert subsystem designed
by Kitchen (17) and Shyong (24). This subsystem is composed of four object classes
whose compound function is to determine if the essential model objects created for
a particular project follow the rules set by the IDEF, methodology. Its operations
answel questions about the logical relationships between the essential model objects
and questions about the syntex adherence of those objects to those prescribed by

the IDEF, methodology.

37

Essential

Subsystem

Data

Calls
Relation
Manager

Adivity Historical
Activity

Manager

ICOM
Relation
Manager

Consists
of Relation
Manager

Element

Manager Manager

Essential
Fact
tilities

Rules
File
Project

Manager
CLIPS/Ada
’ LEGEND

LIPS .
Working Q Object
Memory .
Interface ssentiald0 Bis
(A)—>(B) visible
to A

> Rules file

Figure 8. Essential Model Design

38

4.4 Drawing Model Design

The Drawing Subsystem is composed of twelve object managers (Figure 9).
They are based on the drawing model Entity-Relationship diagram shown in Fig-
ure 6 (chapter 3). Each object class in the subsystem corresponds to a drawing entity
identified in the ER diagram. Each manager is an instantiation of the Generic Mul-
tiple Object Manager. The general operation of this generic manager was described
in 4.2. The Drawing Utilities object shown in Figure 9 is used tc manage input and
output of a given project’s drawing model. The operations of this manager are to
store and retrieve the drawing objects to and from a storage file into the SATool 11

editing environment.

4.5 MAGSE Design

The MAGSE was designed and implemented by Tevis (27). It was designed to
serve as a general purpose interface between an Ada application and the X-Window
system. Its present function is to serve as an interface between the SATool 11 system
and the X Window System. Figure 10 shows the overall design of the MAGSE

subsystem. There are seven object classes in the subsystem (27:3-20 - 3-22):

l. Drawing Primitive - This class contains several basic objects that can be placed
on an X-Window screen: lines, boxes, circles, pixels, and text strings. The
operatio.s that can be performed on these objects are: Draw_Object and
Erase_Object. These basic objects are used by the SATool II system to build
the IDEF, diagram objects.

)

2-D Plane - This class contains a two dimensional plane. The operations that
can be performed on it are: Set_X_Y Dimensions, Clip.Complex Primitive on

the plane, and Render_Complex_Primitive on the plane.

3. 2-D Matrix Stack - Contains a stack that stores matrices used to perform two-

dimensional transformations. It’s operations include: Push_Matrix, Pop_Matrix,

39

jagram
Manager

Drawing
Utilities

Drawing
Subsystem

Squiggle

Manage

J untor
Manage

LEGEND

O Object
Bis

@»@ visible
to A

Figure 9. Drawing Model Design

40

Multiply. Matrix with the matrix on the top of the stack, Rotate, Scale, and

Translate with a matrix at the top of the stack.

4. 3-D Pyramid - Contains a three-dimensional perspective pyramid. It sets the
X,Y,Z dimensions of the pyramid, the viewing location and perspective of the

pyra:nid, and clips and renders complex primitives in the pyramid.

5. 8-D Matriz Stack - Contains a stack for storing matrices used in performing
three dimensional transformations. The operations are the same as for a 2-D

Matrix Stack.

6. Input Device - The class contains a keyboard a cursor and a three button
mouse. It's operations include: Read.Keyboard.Input, Get_Cursor_Position,

Detect.Mouse_Movement, Detect.A _Button_Click, and Detect_Window.Events.

7. Window Manager - Contains a window manager object. There are seven win-
dow types: drawing window, acknowledge window, confirm window, dialogue
window, column menu window, sign window, and text window. The manager

can create, move, hide, display, store and delete these window types.

4.6 Graphical User Interface Design

The design of the GUI takes into consideration the requirements specified in
3.2 for the fourth and fifth subproblems, the design of the graphical user interface for
the original version of SATool, and a review of several other graphical user interfaces

(27:3-24). The result is a design that has four separate managers (Figure 11):

1. Project Manager- Contains the one project object that is present in the SATool
IT system environment. This manager is responsible for ensuring that an ex-
isting project can be loaded for modifications and saved. It also allows the
user to create a project from scratch. This manager also has the capability

of transforming a project that exists only in its es-ential model form (i.e. no

41

input
evice

2-D 2-D,
plane matrix
stack

drawing
primitive

window
manager

3-D 3-D
pyramid matrix
stack
LEGEND
CD Object
Nessa e
assin

Figure 10. MAGSE Design

drawing objects defined) and creates the diagram model. This project man-
ager is not the same as the project manager defined for the essential subsystem.
This project manager is in charge of handling the essential subsystem objects

as well as the drawing subsystem objects.

. Diagram Manager - Manages the diagrams that are graphically presented to
the user. This manager ensures that the user can create and delete IDEF,
diagrams in the prescribed hierarchical format. It allows the user to view and
modify diagrams in a hierarchical order as well as allowing the user to access
a specific diagram without having to go through the entire hierarchy. Iike the
project manager above, this diagramm manager views a diagram as consisting

of both the essential and drawing model objects.

. Dale Dictionary Manager - The data dictionary manager allows the user to
view the data dictionary information and perform modification operations on
the attributes of essential model objects. Only the modification of existing
objects is allowed. Creation and deletion of objects must be done via the
diagram manager. This manager does not deal with the drawing model objects

at all.

Fnvironment Manager - Allows the user to control the SATool 11 editing envi-

ronment via the following operations:

o Turn Grid On/O[f- Allows the user to create his liagrams with or without

a guiding grid.

o Change Drawing Font - Controls the type of character that is used in the

diagrams.
e Change Line Thickness - Controls the thickness of the drawing lines.

o Change Object Dimensions - Controls the size of objects in the diagram.

43

Project
Manager

Diagram
Manager

Data
Dictionary
Manager

Environment
Manager

LEGEND

Figure 11. Graphical User Interface Design

44

4.7 Owverall SATool II System Design

The overall SATool II System design is shown in Figure 12. This system is
composed of the Graphical User Interface subsystem, the Essential Model subsystem,
the Drawing Model subsystem, and the MAGSE subsystem. The MAGSE subsystem
works as the interface between the SATool II system and the X-Window System. The
GUI performs the calls to the CLIPS Expert system operations to perform the syntax
and logical checks on the Essential subsystem objects. This design evolved as a result
of the design of the GUI which ties together all the other managers created for the
SATool II system.

4.8 Summary

This chapter described the design of all the components of the SATool II sys-
tem. There are four subsystems that contain managers to handle all the objects
found in the system. The essential model subsystem manages all logical objects that
contain the data dictionary information associated with activities and data elements
within an IDEF project. It also manages the expert system used for syntax check-
ing. The drawing model subsystem manages the drawable objects that define where
the activities and data elements appear on a diagram within an IDEF, project. The
MAGSE subsystem is used to manage the interface between the X-Window system
and the Ada based SATool II system. Finally, the GUI is the part of the SATool II
system that allows a uscr to view an IDEF, project and check its conformance with
IDEF, rules by tieing together the essential subsystem, the drawing subsystem, and

the X-Window System.

graphica
_ user
interface

Drawing
Model

LEGEND

@ object

.
Visible

to A

Figure 12. Overall SATool IT System Design

46

V. Implementation

5.1 Introduction

This chapter describes the implementation of the Graphical User Interface
(GUI) subsystem identified in the previous chapter. The purpose of the GUI is to
bind all other subsystems into one homogeneous, user friendly environment. The
package dependencies for the Essential, Drawing, ana MAGSE subsystems are de-
scribed in Appendices A through C. The package dependencies for each module in
the GUI will be shown via diagrams composed of a modified version of module sym-
bols presented in (3:55-59). Figure 13 shows the three types of module symbols used
in this chapter to describe the SATool II system packages. The first module is used
to represent the main SATool II subprogram. The second module represents the
packages that encapsulate the object operations in the system. The third symbol
represents all the packages in an entire subsystem. This third symbol is used as a
space saver since there are some packages in the GUI system that require access to

all objects and operations from the essential subsystem and the drawing subsystem.

All Packages
in Subsystem

Subprogram Package
<o
> —
—
I

Figure 13. Booch Module Symbols

The following sections describe how the GUI subsystem is logically divided.
As described in the previous section, the GUI is composed of the project manager,

diagram mai.ager, data dictionary manager, and the envirunment manager. The

47

implementation of these managers is viewed from a window perspective. First, the
overall SATool II system environment is described, then each of the GUI windows

and their function are described along with their package dependencies.

5.2 Qwverall SATool II System Environment

Figure 14 shows the main SATool II window system presented at the start of
program execution. There are six distinct windows shown in this figure. Of these
six, there are two windows which hold the menus that implement the four GUI
managers. How each manager was implemented is discussed in the sections that

present a description of the menu windows.

The first window shown in Figure 14 is the SATool II title window. Below it
are the main menu window and the diagram edit menu title window used to identify
the tools window. The tools window sits on top of the objects window. Both the
main menu window and the tools window encapsulate the operations defined for the
four GUI managers. The diagram window is next to the tools and objects windows.
There are several other types of windows managed by the GUI that fall into the

category of popup windows that do not appear in this figure.

Figure 15 presents the package dependencies of the SATool II application. The
SATool II subprogram is used as a control mechanism for the GUI components.
The arrows going from the packages to the main subprogram indicate that the sub-
progiam can view the objects contained in each package and can only perform the
operations allowed by those packages. The following section describes the window

types contained in the GUI

5.8 Window Types

The GUI is implemented as a subsystem based on window objects. Each
type of window has its own set of operations that can be performed on it by any

giveu application. In general, the operativns encapsulated by cach wind w package

48

SAtoolil — the IDEFO Project Editor

Welcome to the SAtoolll prototype...Select from the PROJECT menu to begin

Diagram | [PROJECT | [DIAGRAM | [DICTIONARY | [OUTPUT] [OPTIONS | [UTILITY]

Edit Menu

READER:

Create | NPROJECT:

DATE

Delete
Clear Window

Diagrom
Box
Line Segment
Arrow
Simple Turn
Junctor
Squiggle
Label
Note
Footnote
Netanote

FEO

Figure 14. Overall SATool II System View

49

MAGSE
Interface

>

SATool2

]
.

AN

— |
Dialog
Window

>
—
|/

Environment
Types

>

]
1

NaAn

Object
Drawing
Package

I> <d> > > d> I> I>
| [] [) T - - 3
5 e s e b o e
1 L 1 1 1 | I L
Title Help Tools Main Tools Objects Drawing
Window Window Title Menu Window Window Window
Window Window

Figure 15. SATool Il Subprogram Package Dependencies

are create_window, view_window_contents, and get_window_id. The following list

summarizes the various types of windows present in the GUI subsystem:

o Permanent Windows - these are windows that once created, are constantly

displayed on the screen.

~ Text Window- A text window is used to output lines of text to the screen.
— Drawing Window - Allows text and graphical objects to be drawn on it.

— Sign Menu Window - These menus have a set of button-like icons that

the user “clicks” on with a mouse.

o Popup Windows - These are windows that are created and show up only when

needed. Once the operation is completed they are erased from the screen.

— Column Menu Window - This window differs from the sign menu window
in that it is usually used as a submenu once an upper menu choice has
been selected. Instead of buttons, its choices are displayed in a column

format.

— Dialogue Window - This popup window is used by an application to accept

a string of text from the screen.

— Acknowledge Window - This popup window is used to convey messages
to the screen. These messages can range from error messages to simply

acknowledging the completion of an operation.

— Confirm Window - This is a type of dialogue window that accepts one of

three answers from a user: yes, no, cancel.

The following sections describe how these window types are used in the GUI
subsystem. There is one section for each GUI package described in Figure 15. It

can be observed that the MAGSE interface package is accessed by each packag: in

a1l

the GUI. The MAGSE Interface package is a central player in every package of the
GUI subsystem since it is the gateway the system uses to communicate with the X
Window environment to output information to the screen about the window objects

it contains.

5.4 Dialogue Window

The dialogue window package actually encapsulates three different types of
window: dialogue, acknowledge, and confirm. Their operations are limited to cre-

ate_window and get_user_response. Its package dependencies are listed in Figure 16

Dialog
Window
>
]
—
Drawing DD
MAGSE Window Text
Interface Window
I>
-) — 5
—3 — -

Figure 16. Dialogue Window Package Dependencies

5.5 Title Window

The purpose of the title window is to Identify the SATool Il System. It is a

text window with no operations associated with it other than the create and view

operations. The only package dependency it has is the MAGSE Interface package
(Figure 17).

MAGSE Title
Interface Window
- <>
[
 ——
— |

Figure 17. Title Window Package Dependencies

5.6 Drawing Window

The drawing window is used to view the IDEF, diagrams. The operations
associated with it are create.window, clear.window, place_object.on.window,
delete_object from_window. Existing diagrams are output to it via the Diagram
button in the main menu and are edited via the diagram editing menus found to its

left. Its package dependencies are shown in Figure 18.

5.7 Main Menu Window

The main menu window provides access to the project manager, diagram man-
ager, data dictionary mai.ager and environment manager identified in Figure 11 of
Chapter 4. These managers are divided into six sections that can be accessed via
the six buttons seen in the main menu window. The package dependencies at this
level are seen in Figure 19. The following subsections will provide a description of

the operations provided by each button in the main menu.

5.7.1 Project Button The project button encapsulates the project manager
functions. Its package dependencies are shown in Figure 20. This button provides

ten operations:

Drawing

Window
>
e
 ——
|
MAGSE SA
Interface Diagram
<> N)
- 4
- { I
— |

Figure 18. Drawing Window Package Dependencies

. Create Project - Allows a user to create a project from scratch. The SATool 11
system requires unique project names. If a user tries to create a project using
the name of an exiting project, the system will output an error message to the

screen and allow the user to try again.
. Load Progect - Allows the user to access an existing project.

. Save Project As - Multiple versions of a project can be saved by accessing
this operation. A given project is loaded or created. If the user wants to
make modifications to the project and save the original project as well as the
modified one, he can do so by saving the project under a new name. As with

the create operations names here must also be unique.

. Save Project - This operation is used when the project that was loaded or
created is to be stored with the name given to it when it was created or loaded.
Once the project has been saved, the project is deleted from the SATool 11

program environment.

94

MAGSE Environmen Project

Interface Types Manager
> > L
3 o s | S —
= MAGPE = Ess - Esg

Main Utilit

Dial Menu ility

Window Window Button
+ = =
I o>
== 5 ==

g

Project Diagram Dictionary Outpu Options

Button Button Button Button Button
<> <o > L <>
I S - []
- 1 i [)

Figure 19. Main Menu Window Package Dependencies

5. Lay Out Project - This operation is used to automatically create diagrams,

given the essential model objects file exists.

6. Derive Project - This operation is used to automatically create the essential

model objects, given the drawing model objects file exists.

7. Show Directory - Allows the user to see the projects available for editing in the

present directory.

8. Change Directory - Allows the user to access a different directory so he can

view the projects contained in it.

9. Clear Project Environment - Deletes the present project from the SATool I1

environment without saving the changes, if any.

10. Exit Program- Allows the user to exit the SATool II program after first checking
if the present project has been saved. If it has not been saved, it gives the user

the option of saving it under the given name or a new name.

5.7.2 Diagram Buiton The Diagram manager is divided into three parts.
This was done to create a more efficient system for the user. The edit operation was
given its own windows and menus. This diagram editor is located left of the drawing
window (see Figure 14). The print operation is handled by the Output Button
located in the main menu. The Diagram Button was given the view operation.

Within it there are three direct viewing options and two diagram traveisal options:

1. Show A-0 Diagram - Outputs to the diagram window the first diagram in the
hierarchy, the A-0 diagram.

2. Select by Diagram Name - Outputs to the diagram window the diagram iden-

tified by the user. The id used by this operation is the activity name.

3. Select by Hierarchy - First, the operation outputs a hierarchical view of the

diagrams via a pyramid schem. of lines and boxes. The view can go as far

56

Draw ESS
%ﬁéﬁgg Subsystem Subsystem
o >

EZ:D o — e
= A ——DRA = ESs

Dialog Project

Window Button
=)
o e [1]
13 1]

|

Figure 20. Project Button Package Dependencies

as twenty levels deep. The user is allowed to click on one of the boxes shown
in the hierarchy diagram. The chosen diagram is then output to the diagram

window.

4. Go to Child Diagram - Allows downward traversal of the diagram hierarchy

from parent to child, one layer at a time.

5. Return to Parent - Allows upward traversal of the diagram hierarchy from child

to parent, one layer at a time.

6. Refresh Diagram - Refreshes the diagram image in the drawing window.

Once the desired diagram is output to the drawing window, it can be edited
using the diagram edit menu windows located at the left hand side of the screen.

The diagram button package dependencies are shown in Figure 21.

o
-3

MAGSE Diagram Drawing
Interface Button Window
d> <J> [)
i > 1 - 1
—— ¢ AGBE - M
— |

Figure 21. Diagram Button Package Dependencies

5.7.8 Dictionary Buiton When a user clicks on the dictionary button, a
whole new layer of windows is output to the screen. The data dictionary editor

operations and package dependencies will be described in a separate section.

5.7.4 Output Button The Output button is used to control the hard copy
printouts the user might want to get from his project diagrams. The operations
provided by this button allow the user to print out the IDEF, diagrams as well as
the data dictionary entries. The package dependencies are shown in Figure 22. This

button has two operations:

1. Output Data Dictionary - Outputs all the data dictionary entries into printable
text file. The format of the entries is the same as that seen in the Data

Dictionary Editor.

2. Output Diagram - Provides infurmation to the user on how to output any given

diagram using the X Window environment.

5.7.5 Options Button The environment manager is encapsulated by the Op-
tions Button. It provides operations to change the present SATool II editing envi-

ronment. Its package dependencies are shown in Figure 23. It has four operations:

1. Grid - Allows user to turn on or off a grid in the drawing window. This grid

can be used to aid in the construction of a diagram.

58

MAGSE Output Drawing
Interface Button Window
I> > >
— > 1] B o i
= MAGRE - =
— |

Figure 22. Output Button Package Dependencies

2. Drawing Font - Changes the text font for labels and notes appearing in the

drawing window.

3. Line Thickness - Changes the line thickness of activity boxes and line segments

of a diagram.

4. Dimensions - Changes the size of objects in the diagram.

MAGSE Options Drawing
Interface Button Window
> > I>
- >] - 1]
I MAGRE = -
—— |

Figure 23. Options Bution Package Dependencies

5.7.6 Utility Button The utility button has two operations. The first is Check
Syntar. This operation allows the user to do a CLIPS syntax check on the essential
model objects in the project. Presently, there is no equivalent check for drawing
model objects. The second operation provided by the utility button is Refresh Screen.
It can be used to redraw all the windows and their text. The package dependencies

for this button are shown in Figure 24.

MAGSE Utility Drawing
Interface Button Window
> - -
—3 —> 11 - 1)
I MAGSE —
—

Figure 24. Utility Button Package Dependencies

5.8 Tools Title Window

This window is used to identify the diagram editing windows that sit below
it. It has no operations associated with it. Its package dependencies are shown in

Figure 25.

Tools
MAGSE Title
Interface Window
> <>
 —— > 11
i
|

Figure 25. Tools Title Window Package Dependencies

5.9 Tools and Objects Windows

The Tools and Objects windows are directly related to each other. The user can
access these menus directly so he can create IDEF, diagrams or edit existing ones.
These menus were placed in permanent sign menu windows instead of the popup
column menu windows to provide easier access to the user. The way these two
windows work together is by allowing the user to click on one of the tools window

buttons. If the cieate, update, move, or delete buttons are selected, the system

60

then waits for the user to click on one of the object buttons. The tools window
and objects window package dependencies are shown in Figure 26 and Figure 27
respectively. Following is a discussion of the operations provided by each button in

the tools menu.

MAGSE Environmen Project
Interface Types Manager
> <I> L
- ——
= MAGSE = ESS - Esg
Dialog Tools Drawable
Window Window Class
> > >
o > O o
=3 0 D RAY
/ Clear
Create Update Move Delete Diagram Undo
Button Button Button Button Button Button
S)) <> <>)
|/ o — —/ I — -
3 M O N
! L 1 1

Figure 26. Tools Window Package Dependencies

5.9.1 Create Bution The create button allows the user to create an A-0 di-
agram when there is a new project in the system. If the project already has one or
more diagrams, the user must first bring up one of those diagrams before any cre-
ation or editing can be done. This ensures that the diagram system is hierarchically

correct. Once a diagram has been «reated, it is displayed in the drawing window and

61

MAGSE Objects

Interface Window
> -)
T]
EHOIMAGRE -

|

Figure 27. Objects Window Package Dependencies

the user can begin to place activities and data elements in it. Subsequent diagrams
can be created by first clicking on the Create button, then the Diagram button, and
then clicking on an activity box in the diagram. This creates the diagram associated
with the given activity box. If that box already has a diagram associated with it,

an error message is issued. The package dependencies are shown in Figure 28.

5.9.2 Update Button The update button allows updates of data element
names, activity names and numbers, label text, and note text (includes footnotes

and metanotes). Package dependencies are outlined in Figure 29.

5.9.3 Move Button This button allows an object to be moved from one place
to another in the diagram. It ensures that illogical placements do not occur. For
example, placing an arrow-head inside an activity box. The package dependencies

for this button are shown in Figure 30.

5.9.4 Delete Button Objects are deleted by first clicking on the Delete but-
ton, then an object button, and then clicking on the target object in the diagram.
All traces of that object then erased from the essential subsystem and the drawing

subsystem. Package dependencies for this button are shown in Figure 31.

5.9.5 Clear Diagram Button Clicking on this button will cause the present

diagram to be erased fron: the drawing window. Therc is no need to call a save

62

Draw ESS

MAGSE
Interface Subsystem Subsystem
> >
ég DO N
I Cr
90 MAGBE DRA BSS
L_\ -
Button
>
| I
_ / /4 \ Object
Dialog Objects Drawing Drawing
Window Window Window Package
> L <I> <I>
I — — |/ -
|/ |) 4

Figure 28. Create Button Package Dependencies

63

Draw
MAGSE Subsystem £SS

Interface Subsystem
> >
ég =5 —
13 .
= MAGSE DRA £99
Update
Button
D .
I |
N
Dialog Ob jIcts Drawing
Window Window Window
> - >
| 1
— o — —

Figure 29. Update Button Package Dependencies

64

Draw ESS
MAGSE
Interface Subsystem Subsystem
> >
E:__:ID 3 |3
] Crf
= MAGSE DRA BoS
Move
Button
>
—3
M
_ / / \ Object
Dialog Objects Drawing Drawing
Window Window Window Package
> > > -
43 | —3]
I S N

Figure 30. Move Button Package Dependencies

65

Draw 0
MAGSE Subsystem ESS

Interface Subsystem
> d>
ég 3 4
03 Cfar
O MAGHE DRA £5S
Delete
Button
>
M
—4
| / / \ et
Dialog Objects Drawing Drawing
Window Window Window Package
I> > > -
— M —/ -
/4 3 I -

Figure 31. Delete Button Package Dependencies

66

opera.ion because all creations and modifications are saved into the respective sub-
systems when they are made. Deleting the diagram from the screen will cause the
system to wait for a diagram to be called up via the Diagram button in the main
menu window before any more operations can be performed with the diagram edit

menu. Figure 32 shows the package dependencies for this button.

MAGSE Drawable
Interface Class
I
S|
5
DRA¥
Clear /
Diagram -
>
I -
oA . — Drawing
Diagram Window
<S5 / \CD
- ==
5 i

Figure 32. Clear Diagram Package Dependencies

5.96 Undo Butivn This button lets the user undo the last command. If «
creation was made, then the created object is deleted. If an object was moved, it

is placed b-.ck into its original location, and so on. The package dependencies are

shown ir Figure 33

5.10 Data Dictionary Editor

When the Dictionary button is pressed in the main menu window, the user is

given four choices Ile can view the data dictionary entries for all activities, all data

o7

Draw ESS

MAGSE
Interface Subsystem Subsystem
S >
ég | I
. 4 CIy
0 MAGBE DRA £93
Undo
Button
>
—
T \

‘ // Object
Dialog Objects Drawing Drawing
Window Window Window Package

5 <o S >

s I - N

- —— a—— —/
—

Figure 33. Undo Button Package Dependencies

68

elements, a single activity, or a single data element. Depending on which choice is

made, the system will then bring up a new set of windows.

There are separate edit screens for the activity and data element entries (see
Figure 34 and Figure 35). In general, each screen has four windows: a title window,
an edit window, an options window, and a text window. The title window is used to
identify the Data Dictionary editor. The text window shows the data dictionary entry
information for each activity or dala element, one at a time. The edit window allows
changes to be made to the text via its edit buttons. The entry is then automatically
updated in the screen. The options menu allows the user to traverse through all the
data dictionary entries via the Next Activity or Next Data Element button. Each
entry may be several pages long and can be viewed page by page with the em Next
Page button. This window system can be exited via the Exit button. The data

dictionary package dependencies are outlined in Figure 36.

5.11 Summary

This chapter presented the implementation of the Graphical User Interface
subsystem. In the previous chapter this subsystem was identified as having four
general object managers. In this chapter it was shown how these four managers
were implemented within the SATool Il system via the different menus and windows
provided by the application. The GUI is divided into a set of window objects and
the SATouol II subprogram is used as a means of coutrol for these windows and the

operations that are defined for each.

69

Activity
Edit Menu

Next Page

[Next. Activity | |

Exit

fictivity Neme

Activity Number

fippend Description

Replace Description

fiprend Reference

Replace Reference

Reference Type

Version

l

fippend Yersion Chenges

Replace Yersion Changes

Version Date

Version fAuthor

L1} "o LYY

" General Actlvity Information

0000 50 00 44 00 50 04 00 54 96 0024 54 26 04 1450 54 56 54 D0 64 50 50 00 06 04 00 56 00 20 400 00 00 0 00 00 0 00 40 04 00 04 0000 M 4

Name : Control_Elevator
Type s Activity

Project : Control_Elevator
Number s A0

Description :
DeceriptioDesc AD control elevator

ICOM Information :
Data Element Relationship To Activity
sunmons_indication
floor.sensor
door_sensor
system_control
control_signals
passenger_requests
overload_sensor
floor_motor_drive
door_motor.drive

BB 000G00

Calls H
No calls relation info for this activity,

Parent Act

Reference
Reference Ro text present.

Ref Type :
version :

Changes H
Changes HNo text present.

Bate
Author

e oo

Figure 34. Activity Data Dictionary Editor Screen

70

Data Element

Replace References

Reference Type

Version

Append Version Changes

Replace Veraion Changes

Version Date

Version fluthor

No childgren found for this data element,

ICOM Information :
Activity
Control_Elevator
Store_Request
Elevator_Control
Manage_Summons_Request
Manage_Destination
Check_Destination
Control_Request
Store_Dest_Request

Relationship To Activity

noooconno0

Reference :
[Reference No text present,

| Next Pege | [Next Data Element | | Exit
Edit Menu

000 04 00 Dh 0 0 20 40 00 40 30 D6 B 20 B0 24 20 04 LT 1]

L Data Element. Nome l " General Data Element Information
L LT] “e 'Yy

l fippend Descriptlon l Name H summogf-!ndzcatlon
Type + Data Element

l, Replace Description l Pgodecc : Control_Elevator

I Data Type I gescrlptlon : "
tescriptionot-n

| Hin Value | s .

- Data Type H

| fax Value | Minvalue
Max Value H

[Date Ronge | |Range :
Values :

ﬂppend Yalues l Values No text presgent.
Replace Yalues | Decomposition :
Part of :
fippend References | No parents found for this data element,
| Composed of :

Ref Type H
Version H

Changes H
Changes No text present.

Date :

Figure 35. Data Element Data Dictionary Editor Screen

Environment Activity Activity Data Element Data Element

A

AN

AN

0aA

Class Manager Class Manager
> > > I>
N - e | e/
3 59| || == ESS| || = ESS - ESS

L |
I I
Interface \ /

Dictionary Drawing
i E\\ Button Window
L >
 —— <
- ——
/ DD DD
DD Edit DD Acpivity Da.ta Element
Main Menu Main Menu Ed_xt Menu EQlt Menu
Title Window Window Window Window
> > > -)
N —— |/
- N 2 I

Figure 36. Data Dictionary Button Package Dependencies

72

DD
MAGSE Edit Menu
Interface Title Window
> I>
I |
EIMAGEE —
 —

Figure 37. Data Dictionary Main Menu Title Window Package Dependencies

MAGSE LSS
Interface Subsystem
= =
 — -
ot 3
O MAGHE ESS

DD
'Il)‘elit \ Main Menu
. Window
Window

S] <>
| ——
—3 >
{

Figure 38. Data Dictionary Main Menu Window Package Dependencies

73

MAGSE Essential

Interface Subsystem
- > DD ég
—— Activity ==
P MAGBE Edithenu ESS

Window
TT— /
>
DD

Dialog - Text

Window — Window
- 3
3 i

Figure 39. Data Dictionary Activity Edit Menu Window Package Dependencies

MAGSE Essential
Interface Subsystem
<I> DD gg
—— Data Element =
P MAGSE Edit Menu ESS
Window -
T -
>
DD
Dialog s Text
Window — Window
) i
 —— —

Figure 40. Data Dictionary Data Element Edit Menu Window Package
Dependencics

DD
MAGSE Text
Interface Window
I> | L
i
EIMAGRE =
|

Figure 41. Data Dictionary Text Window Package Dependencies

15

VI Testing and Fvaluation

6.1 Introduction

This chapter presents the testing procedures, test results, and evaluation of
the SATool II system. “Software testing is defined as the execution of a program
to find its faults” (13:191). Myers states that “a good test case is one that has a
high probability of detecting a previously undiscovered defect, not one that shows
that the program works correctly” (20). The purpose of the tests performed on the
SATool II system was to determine how many faults could be found. A test was
successful if it found an anomaly in the system. It failed if it did not detect an
error. The following section describes the tests performed on SATool II. The results
of these tests are then discussed. Finally, an evaluation is made of the system as a

whole based on the test results.

6.2 Testing

There are seven types of tests that can be performed on a software system
(13:192-204). The following subsections discuss the tests performed on the SATool

IT system based on these seven types of tests.

6.2.1 Unit Tests Also known as white box testing because the test is based
on knowledge of the internal design of the module. It is used to validate single
programs or modules. These are essentially path tests and are typically conducted
in isolated or special test environments. Each module in the SATool II system was
tested using this white box approach. This included all the operations performed
by the main menu buttons and the operations performed by the diagram editing
buttons. General test cascs were defined for each module based on the possible

paths the module could fr'low (see Appendix F).

16

6.2.2 FEzternal Function Tests Validate the external system functions, as
stated in the external specifications. This is also known as black box testing be-
cause the test performed has no knowledge of the internal design of the modules
being tested. This type of test was used in conjunction with the integration test

described below.

6.2.8 Integration Tests Validate the interfaces between system parts (mod-

ules, components, subsystems). It can be performed in one of three ways:

e Bottom-Up - Each module is tested separately using special development drivers
that provide the needed system functions. As more modules are added to the
system, the driver is replaced by the modules that perform the simulated func-

tions.

o Top-Down - Uses a prototyping approach. A basic system skeleton is con-
structed and new modules are added and tested as they are developed. The

function of lower level modules are simulated by program stubs.

e Big Bang - Each module is developed first. Then, the are all assembled and
run together. This is the least effective of the three methods. The need for
special drivers or module stubs is eliminated; but, each module is only given a
cursory test with this method and the likelihood of a total system integration

failure is great.

Integration testing for SATool II was performed using the top-down approach.
The main subprogram was developed and implemented with stubs for each major

function. As each module was developed, it was attached to the main system and

‘tested to ensure proper integration.

6.2.4 System Tests Validate the system to its initial objectives. The ro-

bustness of the system as a whole is considered during these tests. They take into

17

consideration factors like peak loads and volume the system can accept, security, per-
formance under peak and normal conditions, system reliability, and recovery mecha-
nisms. The SATool II code was designed to be internally robust. It tries to take into
consideration all possible inputs to the system. When a failure is detected anyway,
a secondary mechanism takes control where the program terminates as gracefully as
possible. So, the system testing for SATool II was actually embedded into the unit

and integration testing cases.

6.2.5 Acceptance Tests Validate the system or program to the user’s require-

ments. This test was done in conjunction with the installation test described below.

6.2.6 Installation Tests Validate the instability and operability of the user’s
system. In other words, test the system in a real user’s environment. This test was
performed by getting several volunteers to use the system and fill out questionnaires
pertaining their evaluation of the system based on a set of criteria. Appendix G
contains a sample of the standard form used by the Department of Electrical and

Computer Engineering at AFIT to evaluate software systems.

6.2.7 Regression Tests Run a subset of previously executed integration and
function tests to ensure that program changes have not degraded the system. This
type of test is usually performed once a system has been developed and is operational.
Therefore, this type test was not used at this point for SATool II. However, if future
regression testing should be required, Appendix I contains the test cases developed

for this research effort.

6.3 Test Results and Fvaluation

6.8.1 MAGSE Interface Throughout the development of the SATool II ap-
plication several errors were detected in the MAGSE Interface procedures. These

errors have been corrected and documented in the cude of the following procedures:

78

o MAGSE Interface.Input Device.Get_Confirm_Choice
e MAGSE_Interface.Input.Device.Get Dialogue_Response
o MAGSE_ Interface.Input Device.Get Menu_Entry Choice

o MAGSE_Interface.Input.Device.Wait_For_Acknowledgement

The only observed discrepancy that has not been corrected in the MAGSE
subsystem is related to the exposure of window text. If a window is hidden or
covered by another window in the SATool II application and then shown again, the
contents of the window are not re-exposed as well. Since this is not a problem that
occurs often, a temporary solution has been created by the addition of a Refresh

Screen operation to the Utility Button menu.

6.3.2 Graphical User Interface The unit test cases presented in Appendix
I were used to validate the proper function of each operation the SATool II per-
forms. These test cases were useful in uncovering several logical errors. The errors

encountered have been identified and are currently being corrected.

The test cases for the integration test consist of a set of IDEFg project diagrams
for a project named ARTMOS (see Appendix I'). The purpose of re-creating this set
of diagrams within the SATool II system is to ensures that the system can accurately
create the essential and drawing model information for a project that containes a
comprehensive set of diagrams. This test should be performed on the system once

the unit testing errors have all been corrected.

The installation test should be performed by obtaining user evaluations with
the CAD-Tool Human-Computer Interface Evaluation form (see Appendix G). This
form can be used to measure the user satisfaction with the tool’s graphical user
interface. This test should be performed once the system has been validated at the

integration level.

79

6.4 Summary

This chapter presented the test procedures used to evaluated the SATool II
system. Comprehensive unit tests were performed during the system development
and were helpful in uncovering several logic errors. Corrections are currently being
made to the SATool II code based on the unit test results. The integration test and
installation test should be performed once the code has been validated by the unit

test cases.

80

VII. Conclusions and Recommendations -

7.1 Summary

This thesis was divided into seven chapters. The first chapter presented the
background information that triggered this research effort. Chapter 2 presented the
findings of the liteiature review performed in order tp explore system enhancement
alternatives for the SATool II system. Chapters 3, 4, and 5 presented the Require-
ments Analysis, Design and Implementation of the SATool I system. The SATool II
tests, results and evaluation were presented in Chapter 6. This chapter summarizes
the thesis findings and presents several recommendations for further work to be done

with the SATool II system project.

7.2 Conclusions

7.2.1 Research Accomplishments This investigation resulted in several ac-
complishments in relation to the design and implem?ntation of the Graphical User

Interface for the SATool II system:

o The revision of the drawing model for the SATool II system. The revision
redefined the relationships between the objects in the model and the attributes
for each object. This revision made a simpler implementation of the GUI

possible.
o The design and implementation of the revised drawing model.
e Development of a layout algorithm for IDEF, diagrams.

¢ An object oriented design and implementation of the GUI was completed. The
system was implemented so that future enhancements to the system can be

easily added.

81

- Demonstration that the essential model implementation and the revised draw-
ing model implemertation have been fully integrated into the SATool II system.
This ensures that future revisions of the models are not necessary to get the

system to operate correctly.

7.2.2 SATool II The integration of the essential, drawing, and MAGSE sub-
systems into the GUI was a much larger task than seemed on the surface. Working
with faulty code found in the MAGSE subsystem only made the job more difficult.
With all the revisions and stumbling blocks encountered, the project was still ac-
complished. All the major operations required for proper system operation were
implemented. The system is now at a point where all component subsystems have
been fully integrated. Major revisions of the models are not necessary or desired at
this point since the system has been implemented using the models as they currently
stand. However there are a few minor modifications recommended for the drawing

and essential models. These are discussed in the next section.

7.3 Recommendations

7.8.1 SATool IT Menu Selections There are still some menu options that have
not been implemented. Future revisions of the system should include the addition

of the operations defined for these menu options. These operations include:

e Main Menu Window

— Project Button

x Lay Out Project
* Derive Project
* Show Directory

% Change Directory

— Diagram Button

82

* Show by Hierarchy
— Options Button

* Grid
* Drawing Font
* Line Thickness

* Dimensions
e Tools Menu Window

— Move Button

* Box

* Line_Segment
% Simple_Turn
* Junctor

* Arrow

* Squiggle

— Undo Button

7.3.2 System Enhancements Chapter 2 outlined several enhancement options
that could be added to the SATool II system in the future. These options included
highlighting via color, an online help function, an automatic diagram layout function
that creates drawings from an essential model description, and a configuration control

function for the projects managed in the SATool II system.

7.8.8 The MAGSE Subsystem The MAGSE subsystem is connected to th